Limestone and Calcium in Plants

Elemente der Naturwissenschaft 112, 2020, S. 29-78 | DOI: 10.18756/edn.112.29

Zusammenfassung:

Diese Arbeit gibt einen Überblick über die physiologische, ökologische und klimatische Bedeutung von Kalk und Kalzium in Pflanzen. Kalk ist ein biogenes Gestein, eine mineralische Form von Kohlenstoff, die sich auf der Oberfläche der Erdkruste ablagert. Durch Erosion kann gelöster Kalk biologisch aktiv werden. Pflanzen sind an den polaren Prozessen zwischen aktivem und inertem Kalzium beteiligt (Bio-Mineralisation in vivo und Karbonisation post mortem). Die Einflüsse von bodenbedingten, biologischen und klimatischen Gegebenheiten auf die vielfältigen Lebensräume von generalistischen, kalkliebenden und kalkmeidenden Pflanzen werden kurz beschrieben, ebenso die Rolle von Kalk- oder Kieseldüngung. In der Pflanze hält das Oszillieren von Calcium zwischen aktiv löslicher und inaktiv gebundener Form die zelluläre Konzentration in den engen Grenzen zwischen Mangel und Toxizität. Kalziumoxalat-Kristalle ermöglichen es der Pflanze, biotischen und abiotischen Herausforderungen zu widerstehen und die Nutzung des einfallenden Lichts zu optimieren. Aktives Kalzium ist an Konsolidierungsphänomenen beteiligt, indem es bei der Versteifung der Zellwand als Vernetzungsmittel des Pektins und bei Signal-Transduktionsmechanismen während des Wachstums der Wurzelhärchen oder des Pollenschlauchs wirkt. Es ist für die Bewegungen von Spaltöffnungen unverzichtbar. Zuviel Kalzium im Kulturmedium verhindert die Keimung des Samens. Die Rolle der Kalziumsignale ist in den biochemischen Dialogen zwischen Pflanze und Rhizobium für die Bildung von Wurzelknöllchen zur biologischen Stickstofffixierung von grosser Bedeutung. Diese Daten werden mit den von Steiner beschriebenen phänomenologischen und anthroposophischen Befunden verglichen, vor allem bezüglich der Herkunft des Kalkes, seiner Rolle bei der Entstehung der Urtiere und der Bildung von Exoskeletten (Mollusken) oder ähnlichen Strukturen (Verfestigung der pflanzlichen Zellwand) oder Endoskeletten (Wirbeltiere). Kalkstein ist lebensfeindlich, aber paradoxerweise schützen seine festen Strukturen das Leben. Kalk, ein inertes Mineral, liegt zwischen einer vergangenen und einer zukünftigen Lebensform. Seine Bedeutung bei den Prozessen der sexuellen Fortpflanzung und der Samenbildung wird in Verbindung mit den Kräften der untersonnigen Planeten betrachtet.

Referenzen
  • Aeschimann, D., Lauber, K., Moser, D.M., Theurillat, J.P. (2004): Flora Alpina. Berne.
  • Amaudric du Chaffaut, S. (2008): La terre et la vie, quatre milliards d'années d’histoire. CRDP de l’Académie de Grenoble.
  • Atkinson, C.J. (2014): Is xylem sap calcium responsible for reducing stomatal conductance after soil liming? Plant Soil 382, p. 349–356.
  • Augereau, J.M. (2008): Les plantes médicinales. In: Hallé, F., Lieutaghi, P.: Aux origines des plantes, Tome 2.
  • Bahr, A., Ellström, M., Schnoor, T.K., Påhlsson, L., Olsson, P.A. (2012): Long-term changes in vegetation and soil chemistry in a calcareous and sandy semi-natural grassland. Flora 207, p. 379–387.
  • Barth, J.G. (2019): Silicon, the Long Forgotten Element of Plants. Elemente d. N. 110, p. 32–53.
  • Bauer, P., Elbaum, R., Weiss, I.M. (2011): Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science 180, p. 746–756.
  • Benesch, F., Wilde, K. (1983): Kiesel, Kalk, Ton. Prozesse in Mineral, Pflanze, Tier und Mensch. Stuttgart.
  • Birkeland, C. (2015): Coral reefs in the anthropocène. Dordrecht.
  • Bothe, H. (2015): The lime-silicate question. Soil biology & biochemistry 89, p. 172–183.
  • Bouillard, J.C. (2016): Les minéraux, sciences et collections. CNRS Editions, Paris.
  • Brice, F. (2011): Les mots de la botanique. Actes Sud.
  • Brown, S.L., Warwick, N.W.M., Prychid, C.J. (2013): Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)? Plant Physiology and Biochemistry 73, p. 219–228.
  • Campbell, N., Reece, J.B. (2004): Biologie. Bruxelles.
  • Charpentier, M., Oldroyd, G.E.D. (2013): Nuclear calcium signaling in Plants 1. Plant Physiology 163(2), p. 496–503.
  • Choi, W.G., Swanson, S., Gilroy, S. (2011): Calcium, mechanical signaling and Tip growth. In: Luan, S.: Coding and decoding of calcium signals in plants. Berlin, Heidelberg.
  • Chytry, M., Danihelka, J., Axmanova, I., Bozkova, J., Hettenbergerova, E., Li, C.F., Rosbrojova, Z., Sekulova, L., Ticht, L., Vymazalova, M., Zeleny, D. (2010): Floristic diversity of an eastern mediterranean dwarf shrubland: the importance of soil pH. Journal of Vegetation Science 21, p. 1125–1137.
  • Clarkson, D.T. (1965): Calcium uptake by calcicole and calcifuge species in the genus Agrostis L. Journal of Ecology 53(2), p. 427–435.
  • Collin-Bellier, C., Isambert, M., Philippe, M. (2010): Plantes, calcaire et calcium du sol. La Garance Voyageuse 90.
  • Craddock, C., Lavagi, I., Yang, Z. (2012): New insights into Rho signaling from plant ROP/Rac GTPases. Trend in cell biology 22(9), p. 492–501.
  • Cukerzis, J. (1984): La biologie de l’écrevisse (Astacus astacus L.). Versailles.
  • Dauer, J.M., Perakis, S.S. (2014): Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status. Forest Ecology and Management 334, p. 64–73.
  • Dayod, M., Tyerman, S.D., Leigh, R.A., Gilliham, M. (2010): Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247, p. 215–231.
  • Domingues, L.S., Ribeiro, N.D., Andriolo, J.L., Possobom, M.T.D.F., Zemolin, A.E.M. (2016): Growth, grain yield and calcium, potassium and magnesium accumulation in common bean plants as related to calcium nutrition. Acta Scientiarum. Agronomy, Maringá 38(2), p. 207–217.
  • Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L., Weathers, K.C. (2001): Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects and management strategies. Bioscinec 51(3), p. 180–198.
  • Du, E., Dong, D., Zeng, X., Sun, Z., Jiang, X., de Vries, W. (2017): Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Science of the Total Environment, p. 605–606, p. 764–769.
  • Epstein, E. (1994): The anomaly of silicon in plant physiology. Proc. Natl. Acad. Sci. USA 91, p. 11–17.
  • Escudero, A., Palacio, S., Maestre, F.T., Luzuriaga, A.L. (2015): Plant life on gypsum: a review of its multiple facets. Biological reviews 90, p. 1–18.
  • Faheed, F., Mazen, A., Abd Elmohsen, S. (2012): Physiological and ultrastructural studies on calcium oxalate crystal formation in some plants. Turkish Journal of Botany 37, p. 139–152.
  • Franceschi, V.R., Nakata, P.A. (2005): Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol. 56, p. 41–71.
  • Gargaud, M., Martin, H., Lopez-Garcia, P., Montmerle, T., Pascal, R. (2009): Le soleil, la terre, la vie, la quête des origines. Paris.
  • Gehlig, R. (1994): Kiesel, Kalium, Calcium und Wasser als Leitelemente in den Naturreichen. Ein Bild von Lebensvorgängen in der Gesteinwelt. Tycho de Brahe Jahrbuch für Goetheanismus. Niefern-Öschelbronn.
  • Gehlig, R. (2013): Skelettbildung und Darmfunktion der Meeresfische. Tycho de Brahe Jahrbuch für Goetheanismus. Niefern-Öschelbronn.
  • Gilliham, M., Dayod, M., Hocking, B.J., Xu, B., Conn, S.J., Kaiser, B.N., Leigh, R.A., Tyerman S.D. (2011): Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany 62(7), p. 2233–2250.
  • Goguel, J. (1959): La Terre. Encyclopédie de la Pléiade. Paris.
  • Gounelle, M. (2017): Les météorites. Que sais-je 3859, Presses Universitaires de France.
  • Grassé, P.P., Doumenc, D. (1993): Zoologie 1. Invertébrés. Paris.
  • He, H., Veneklaas, E.J., Kuo, J., Lambers, H. (2014): Physiological and ecological significance of biomineralization in plants. Trends in Plant Science 19(3), p. 166–174.
  • Himschoot, E., Beeckman, T., Friml, J., Vanneste, S. (2015): Calcium is an organizer of cell polarity in plants. Biochimica et Biophysica Acta 1853, p. 2168–2172.
  • Hopkins, W.G. (2003): Physiologie végétale. De Boeck Université, Bruxelles.
  • Hubbard, D.K. (2015): Reef biology and geology – not just a matter of scale. In: Birkeland, C.: Coral reefs in the anthropocene. Dordrecht.
  • Huheey, J., Keiter, J.E., Keiter, E.A. (1997): Inorganic chemistry: principles of structure and reactivity. New Jersey, USA.
  • IAAP - International Association of Anthroposophic Pharmacists (2017): Anthroposophic pharmaceutical Codex. Med Pharm Scientific Publishers, Stuttgart.
  • Jamin, A., Yang, Z. (2011): Interactions between calcium and ROP signaling regulate pollen tube tip growth. In: Luan, S.: Coding and decoding of calcium signals in Plants. Heidelberg, New York.
  • Jefferies, R.L., Willis, A.J. (1964): Studies on the calcicole-calcifuge habit: I. Methods of analysis of soil and plant tissues and some results of investigations on four species. Journal of Ecology 52(1), p. 1231–1238.
  • Jefferies, R.L., Willis, A.J. (1964a): Studies on the calcicole-calcifuge habit: II. The influence of calcium on the growth and establishment of four species in soil and sand cultures. Journal of Ecology 52(3), p. 691–707.
  • Johnsen, O. (2016): Guide Delachaux des minéraux. Paris.
  • Jouy, A., de Foucault, B. (2016): Dictionnaire illustré de Botanique. Mèze.
  • Kleiber, T., Calomme, M., Borowiak, K. (2015): The effect of choline- stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiology and Biochemistry 96, p. 180–188.
  • Kolodziejek, J., Patykowski, J. (2015): The effect of temperature, light and calcium carbonate on seed germination and radicle growth of the polycarpic perennial Galium cracoviense (Rubiaceae), a narrow endemic species from southern Poland. Acta biologica cracobiensia, series botanica 57(1), p. 70–81.
  • Labidi, S., Jeddi, F.B., Tisserant, B., Debiane, D., Rezgui, S., Grandmougin- Ferjani, A., Lounès-Hadj Sahraoui, A. (2012): Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22, p. 337–345.
  • Lehninger, A.L., Nelson, D.L., Cox, M.M. (1994): Principes de biochimie. Médecine-Sciences, Flammarion.
  • Leurquin, J. (2010): Plantes et calcaire. Les Naturalistes de Charleroi.
  • Liu, T.W., Wu, F.H., Wang, W.H., Chen, J., Li, Z.J., Dong, X.J., Patton, J., Pei, Z.M., Zheng, H.L. (2011): Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology 31, p. 402–413.
  • Ma, J.F., Miyake, Y., Takahashi E. (2001): Silicon as a beneficial element for crop plants. In: Datnoff, L.E., Snyder, G.H., Korndörfer, G.H.: Silicon in agriculture. New York.
  • Ma, J.F., Yamaji, N., Mitani-Ueno, N. (2011): Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad., Ser B87, p. 377–385.
  • Mann, S. (2001): Biomineralization, principles and concepts in bioinorganic materials chemistry. Oxford.
  • Mansfield, T.A., Hetherington, A.M., Atkinson, C.J. (1990): Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, p. 55–75.
  • Masson, P. (2015): Guide pratique pour la biodynamie. Château.
  • Mazars, C., Thuleau, P., Cotelle, V., Brière, C. (2011): Calcium Signaling and homeostasis in nuclei. In: Luan, S.: Coding and decoding of calcium signals in plants. Berlin, Heidelberg.
  • McAinsh, M.R., Pittman, J.K. (2009): Shaping the calcium signature. New Phytologist 181, p. 275–294.
  • McCormick, P.V., Gibble, R.E. (2014): Effects of soil chemistry on plant germination and growth in a northern everglades peatland. Wetlands 34, p. 979–988.
  • Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H.R., Aghdasi, M. (2015): Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere 25(2), p. 192–201.
  • Meyer, S., Reeb, C., Bosdeveix, R. (2013): Botanique, biologie et physiologie végétales. Paris.
  • Morère, J.L., Pujol, R. (2003): Dictionnaire raisonné de biologie. Paris.
  • Muller-Parker, G., D’Elia, C.F., Cook, C.B. (2015): Interactions between corals and their symbiotic algae. In: Birkeland, C.: Coral reefs in the anthropocene. Dordrecht.
  • Perakis, S.S., Maguire, D.A., Bullen, T.D., Cromack, K., Waring, R.H., Boyle, J.R. (2006): Coupled nitrogen and calcium cycles in forests of the Oregon coast range. Ecosystems 9, p. 63–74.
  • Perakis, S.S., Sinkhorn, E.R. (2011): Biochemistry of a temperate forest nitrogen gradient. Ecology 92(7), p. 1481–1491.
  • Perakis, S.S., Sinkhorn, E.R., Catricala, C.E., Bullen, T.D., Fitzpatrick, J.A., Hynicka, J.D., Cromack, K. (2013): Forest calcium depletion and biotic retention along a soil nitrogen gradient. Ecological Applications 23(8), p. 1947–1961.
  • Pinto, E., Ferreira, I. (2015): Cation transporters/channels in plants: tools for nutrient biofortification. Journal of Plant Physiology 179, p. 64–82.
  • Raman, V., Horner, H.T., Kahn, I.A. (2014): New and unusual forms of calcium oxalate raphide crystals in the plant kingdom. Journal of Plant Research 127, p. 721–730.
  • Rameau, J.C., Mansion, D., Dumé, G., Gauberville, C. (2008): Flore Forestière Française-Tome 3: Région méditerranéenne. Institut pour le développement forestier, Ministère de l’Agriculture et de la Pêche, Paris.
  • Rickles, R.E., Miller, G.L. (2005): Ecologie. De Boeck Université, Bruxelles.
  • Rorison, I.H. (1960): Some experimental aspects of the calcicole-calcifuge problem: I. The effects of competition and mineral nutrition upon seedling growth in the field. Journal of Ecology 48(3), p. 585–599.
  • Rothwell, S.A., Dodd, I.C. (2014): Xylem sap calcium concentrations do not explain liming-induced inhibition of legume gas exchange. Plant Soil 382, p. 17–30.
  • Salisbury, E.J. (1920): The significance of the calcicolous habit. Journal of Ecology 8(3), p. 202–215.
  • Schilperoord, P. (2011): Metamorphosen im Pflanzenreich. Lesen im Buch der Verwandlungen. Stuttgart.
  • Serdar, B., Demiray, H. (2012): Calcium oxalate crystal types in three oak species (Quercus L.) in Turkey. Turk. J. Biol. 36, p. 386–393.
  • Simonis, W.C. (1975): Wege zum Heilpflanzen-Erkennen. Stuttgart.
  • Simpson, J.F.H. (1938): A chalk flora on the lower greensand: its use in interpreting the calcicole habit. Journal of Ecology 26(1), p. 218–235.
  • Singh, S., Katzer, K., Lambert, J., Cerri, M., Parniske, M. (2014): CYCLOPS, a DNA-biding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host & Microbe 15, p. 139–152.
  • Steiner, R. (1905): Grundelemente der Esoterik. Dornach 1987, GA 93a.
  • Steiner, R. (1914): Okultes Lesen und okultes Höhren. 3. Auflage, Dornach 2003, GA 156.
  • Steiner, R. (1920): Médecine et science spirituelle. 5. édition, Yverdon-les- Bains 1976, GA 312.
  • Steiner, R. (1923a): Der Mensch als Zusammenklang des schaffenden, bildenden, gestaltenden Weltenwortes. 6. Auflage, Dornach 1985, GA 230.
  • Steiner, R. (1923b): Mysteriengestaltung. 4. Auflage, Dornach 1987, GA 232.
  • Steiner, R. (1923c): Vom Leben des Menschen und der Erde. Über das Wesen des Christentums. 2. Auflage, Dornach 1980, GA 349.
  • Steiner, R. (1924a): Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft. 8. Auflage, Dornach 1999, GA 327.
  • Steiner, R. (1924b): Pédagogie curative. 5. édition, Yverdon-les-Bains 1976, GA 317.
  • Steiner, R., Wegmann, I. (1925): Données de base pour un élargissement de l’art de guérir. Triades 1978, GA 27.
  • Stephens, W.E. (2012): Whewellite and its key role in living systems. Geology Today 28(5), p. 180–185.
  • Suty, L. (2015a): Les végétaux: les relations avec leur environnement. Versailles.
  • Suty, L. (2015b): Les végétaux: des symbioses pour mieux vivre. Versailles.
  • Thomas, R., Busti, D., Maillart, M. (2016): Petite flore de France.
  • Tuteja, N., Mahajan, S. (2007): Calcium signaling network in plants. Plant Signaling and Behavior 2(2), p. 79–85.
  • Webb, A.A.R., Robertson, F.C. (2011): Calcium signals in the control of stomatal movements. In: Luan, S.: Coding and decoding of calcium signals in plants. Berlin, Heidelberg.
  • Wenk, E.H., Dawson, T.E. (2007): Interspecific differences in seed germination, establishment and early growth in relation to preferred soil type in an alpine community. Artic, Antarctic and Alpine research 39(1), p. 165–176.
  • Zhu, J.K. (2016): Abiotic signaling and responses in plants. Cell 167(6), p. 313–324.