Silicon, the Long Forgotten Element of Plants

Elemente der Naturwissenschaft 110, 2019, P. 32-53 | DOI: 10.18756/edn.110.32

Abstract:

Silizium (Si) hat positive Auswirkungen auf die Pflanze und ermöglicht ihr eine wesensgemässe Entwicklung, unabhängig davon, ob sie Kiesel (SiO2) speichert oder nicht. Das wird hier durch die Ergebnisse neuerer physiologischer Untersuchungen belegt. SiO2-Ablagerungen finden sich an der Peripherie der Zellen und Organe der Pflanze; sie werden durch eine Matrix ermöglicht, die aus Zuckerpolymeren oder aus Proteinen besteht, deren Struktur ähnlich der des Kollagens ist. Die SiO2-Ablagerungen nehmen mit dem Alter der Pflanze zu, im Gegensatz zu ihrem beobachteten Vorkommen in menschlichen Geweben. Silizium kann in der Pflanze alternativ Funktionen von Ligninen oder Zellulose übernehmen und somit hinsichtlich physiologischer Aufgaben den Kohlenstoff ersetzen. SiO2 bewirkt einen Lichteffekt, der generell die Leistung der Photosynthese und die Entwicklung der Pflanze fördert. Kiesel wirkt antagonistisch zum Kalzium sowie auch zur Wirkung von Stickstoff, die nach Rudolf Steiner beide Träger der Astralität sind. Kiesel kann unausgewogene Nährstoffverhältnisse im Boden ausgleichen und lindert die Belastung der Pflanze durch biotischen wie auch abiotischen Stress. Diese aktuellen Daten bestätigen die Beschreibungen und Anregungen Steiners, die in der biodynamischen Landwirtschaft eingesetzt werden.

References
  • Ali, S., Farooq, M.A., Yasmeen, T., Hussain, S., Arif, M.S., Abbas, F., Bharwana, S.A., Zhang, G. (2013): The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxycology and Environmental Safety 89, p. 66–72.
  • Augereau, J.M. (2008): Les plantes médicinales. In: Hallé, F.: Aux origine des plantes. Vol. 2. Editions Fayard.
  • Bauer, P., Elbaum, R., Weiss, I.M. (2011): Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science 180, p. 746–756.
  • Belton, D.J., Deschaume, O., Perry, C.C. (2012): An overview of the fundamentals of the chemistry of silica with relevance to biosilification and technological advances. FEBS J. 279(10), p. 1710–1720.
  • Benesch, F., Wilde, K. (1983): Kiesel, Kalk, Ton. Prozesse in Mineral, Pflanze, Tier und Mensch. Stuttgart.
  • Berner, A., Frei, R., Dierauer, H.U., Vogelgsang, S., Mäder, P. (2005): Effects of reduced tillage, fertilisation and biodynamic preparations on crop yield, weed infestation and the occurrence of toxigenic fusaria (Abstract). Proceedings of the 15th IFOAM Organic World Congress: Researching Sustainable Systems – International Scientific Conference on Organic Agriculture, 21.–23.09.2005, Adelaide, Australia, p. 202–205.
  • Brice, F. (2011): Les mots de la botanique. Actes Sud.
  • Cao, B.L., Ma, Q., Zhao, Q., Wang, L., Xu, K. (2015): Effects of silicon on absorbed light allocation, antioxydant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Scientia Horticulturae 194, p. 53–62.
  • Conley, D.J. (2002): Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical cycles 16, N°4, p. 1121.
  • Cooke, J., Leishman, M.R. (2010): Is plant ecology more siliceous than we realise? Trends in Plant Science 16, N°2, p. 61–68.
  • Cooke, J., Leishman, M.R. (2011): Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Functional Ecology 25, p. 1181–1188.
  • Currie, H.A., Perry, C.C. (2009): Chemical evidence for intrinsic ‘Si’ within Equisetum cell walls. Phytochemistry 70, p. 2089–2095.
  • Epstein, E. (1994): The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91, p. 11–17.
  • Epstein, E. (2009): Silicon: its manifold roles in plants. Annals of Applied Biology 155, p. 155–160.
  • Gehlig, R. (1994): Kiesel, Kalium, Calcium und Wasser als Leitelemente in den Naturreichen. Ein Bild der Lebensvorgänge in der Gesteinwelt. Tycho de Brahe-Jahrbuch für Goetheanismus. Niefern-Öschelbronn.
  • Girke, M. (2012): Innere Medizin. Grundlagen und therapeutische Konzepte der anthroposophischen Medizin. Berlin.
  • Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. (2005): Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169, p. 313–321.
  • Grégoire, C., Rémus-Borel, W., Vivancos, J., Labbé, C., Belzile, F., Bélanger, R.R. (2012): Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. The Plant Journal 72, p. 320–330.
  • Habibi, G., Hajiboland, R. (2013): Alleviation of drought stress by silicon supplementation in Pistachio (Pistacia vera L.) plants. Folia Horticulturae 25/1, p. 21–29.
  • Habibi, G., Norouzi, F., Hajiboland, R. (2014): Silicon alleviates salt stress in pistachio plants. Progress in Biological Sciences 4, N°2, p. 189–202.
  • Hattori, T., Inanaga, S.I., Araki, H., An, P., Morita, S., Luxova, M., Lux, A. (2005): Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum 123, p. 459–466.
  • He, C., Wang, L., Liu, J., Liu, X., Li, X., Ma, J., Lin, Y., Xu, F. (2013): Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Physiologist 200, p. 700–709.
  • He, H., Veneklaas, E.J., Kuo, J., Lambers, H. (2014): Physiological and ecological significance or biomineralization in plants. Trends in Plant Science 19 N°3, p. 166–174.
  • Hibou, F. (2019): The human I-organisation and the silicic process – 1. Between two horizons: The topographic polarity of silicic acid with relation to the polarity of consciousness and form. Merkustab (to be published).
  • Hodson, M.J., White, P.J., Maed, A., Broadley, M.R. (2005): Phylogenetic variation in the Silicon composition of plants. Annales of Botany 96, p. 1027–1046.
  • Katz, O. (2014): Beyond grasses: the potential benefits of studying silicon accumulation in non-grass species. Frontiers in Plant Science 5, Article 376, p. 1–3.
  • Katz, O., Lev-Yadun, S., Bar, P. (Kutiel) (2013): Plasticity and variability in the patterns of phytolith formation in Asteraceae species along a large rainfall gradient in Israel. Flora 208, p. 438–444.
  • Kleiber, T., Calomme, M., Borowiak, K. (2015): The effect of choline- stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiology and Biochemistry 96, p. 180–188.
  • Klett, M. (1968): Untersuchungen über Licht- und Schattenqualität in Relation zum Anbau und Test von Kieselpräparaten zur Qualitätserhebung. Projektbericht, VW-Stiftung, Darmstadt.
  • Kolisko, E., Kolisko, L. (1953): Die Landwirtschaft der Zukunft.
  • Kröger, N., Deutzmann, R., Bergsdorf, C., Sumper, M. (2000): Species- specific polyamines from diatoms control silica morphology. PNAS 97, N°26, p. 14133–14138.
  • Law, C., Exley, C. (2011): New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biology 11 (112), p. 1–9.
  • Liang, Y., Sun, W., Zhu, Y.G., Christie, P. (2007): Mechanisms of silicon- mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution 147, p. 422–428.
  • Lüttge, U., Kluge, M., Bauer, G. (2002): Botanique. Tec et Doc, Paris.
  • Ma, J.F., Miyake, Y., Takahashi, E. (2001): Silicon as a beneficial element for crop plants. In: Datnoff, L.E., Snyder, G.H., Korndörfer, G.H. (Hg.): Silicon in agriculture. Elsevier, New York.
  • Ma, J.F. (2009): Silicon uptake and translocation in plants. The proceedings of the international Plant Nutrition Colloquium XVI, University of California.
  • Ma, J.F., Yamaji, N., Mitani-Ueno, N. (2011): Transport of silicon from roots to panicles in plants. Proc. Jpn. Acad., Ser B87, p. 377–385.
  • Mann, S. (2001): Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press.
  • Marmiroli, M., Pigoni, V., Savo-Sardaro, M.L., Marmiroli N. (2014): The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.) Environmental and Experimental Botany 99, p. 9–17.
  • Masson, P. (2009): De l’agrobiologie à la viticulture biodynamique. In: Lamine, C., Bellon, S. : Transition vers l’agriculture biologique. Editions Quae / Educagri.
  • Masson, P. (2015): Guide pratique pour l’agriculture biodynamique. BioDynamie Services, Château.
  • Meer, M. van der, Levite, D., Weibel, F., Küffer-Heer, S., Hurter, U. (2009): Biologisch-dynamische Spritzpräparate im Weinbau. Lebendige Erde 5, p. 46–49.
  • Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H.R., Aghdasi, M. (2015): Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere 25 (2), p. 192–201.
  • Meissner, G. (2015): Untersuchungen zu verschiedenen Bewirtschaftungssystemen im Weinbau unter besonderer Berücksichtigung der biologisch-dynamischen Wirtschaftsweise und des Einsatzes der bio- logisch-dynamischen Präparate. Dissertation Justus-Liebig-Universität Giessen.
  • Misund, A., Frengstad, B., Siewers, U., Reimann, C. (1999): Variation of 66 elements in european bottled mineral waters. The Science of the Total Environment 243/244, p. 21–41.
  • Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., Ma, J.F. (2011): Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. The Plant Journal 66, p. 231–240.
  • Rafi, M.M., Epstein, E., Falk, R.H. (1997): Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). Journal of plant physiology 151, p. 497–501.
  • Remer, N. (1996): Rudolf Steiners Landwirtschaftlichen Impuls. Kiesel, das vergessene Element. II Teil. Edition à compte d’auteur.
  • Reynolds, O.L., Keeping, M.G., Meyer, J.H. (2009): Silicon-augmented resistance of plants to herbivorous insects: a review. Annals of applied Biology 155, p. 171–186.
  • Richmond, K.E., Sussmann, M. (2003): Got silicon? The non-essential beneficial plant nutrient. Current opinion in Plant biology 6, p. 268–272.
  • Shi, Y., Zhang, Y., Yao, H., Wu, J., Sun, H., Gong, H. (2014): Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry 78, p. 27–36.
  • Spiess, H. (1994): Chronobiologische Untersuchungen mit besonderer Berücksichtigung lunarer Rhythmen im biologisch-dynamischen Pflanzenbau. Habil. Schrift Witzenhausen. Schriftenreihe IBDF, Darmstadt, Vol. 3.
  • Steiner, R. (1920): Médecine et science spirituelle. Editions anthroposophiques romandes, Genève 1978, GA 312.
  • Steiner, R. (1923): Mysteriengestaltungen. 5. Vortrag vom 1.12.23. Dornach 1987, GA 232.
  • Steiner, R. (1924): Cours aux agriculteurs. Editions Triades, Laboissière- en-Thelle 1999, GA 327.
  • Strüh, H.J. (1989): Equisetum und Kiesel. Tycho de Brahe-Jahrbuch für Goetheanismus. Niefern-Öschelbronn.
  • Yamaji, N., Mitatni, N., Ma, J.F. (2008): A transporter regulating silicon distribution in rice shoots. The Plant Cell 20, p. 1381–1389.
  • Ye, M., Song, Y., Long, J., Wang, R., Baerson, S.R., Pan, Z., Zhu-Salzman, K., Xie, J., Cai, K., Luo, S., Zeng R. (2013): Priming of jasmonate-mediated antiherbiovore defense responses in rice by silicon. PNAS, Published online, September 3, p. E3631–E3639.
  • Zellner, W., Frantz, J., Leisner, S. (2011): Silicon delays Tobacco Ringspot Virus systemic symptoms in Nicotiana tabacum. Journal of Plant Physiology 168, p. 1866–9.