Schritte zur Komplementarität in der Genetik

Elemente der Naturwissenschaft 64, 1996, S. 37-52 | DOI: 10.18756/edn.64.37

Zusammenfassung:

Vielfalt und Variation von Lebewesen entsteht nach Auffassung der modernen Vererbungs- und Evolutionstheorie auf zwei Arten: durch spontane Mutationen und zufällige Hybridisierung bei der geschlechtlichen Vermehrung. Die Zahl von Publikationen, welche einen Nachweis für die zufällige Variation erbringen, ist erdrückend. Aufgrund dieser zufälligen Variation zusammen mit den molekularen Prozessen der Replikation (Verdoppelung) von DNA, welche die genetischen Veränderungen im Erbgut hervorbringen, gelten spontane Mutationen unbestritten als Motor für Variation und damit Artbildung. Die Auslese oder Selektion durch die Umgebungsbedingungen sorgt nach dieser Auffassung in einem zweiten Schritt dafür, daß nur die best angepaßten Formen überleben, sie schränkt die entstandene Vielfalt ein. Trotz der vielen Bestätigungen der Theorie spontaner Mutationen wird im folgenden Beitrag versucht, eine andere Möglichkeit der Entstehung von Variation zu beschreiben und zu begründen, in der die Umgebungsbedingungen nicht nur auslesen, sondern auch bestimmenden und hervorbringenden Charakter haben. Nicht die Wirklichkeit der spontanen oder zufälligen Mutationen wird damit in Zweifel gezogen, sondern der Anspruch auf deren absolute und ausschließliche Gültigkeit. Die Situation in der modernen Genetik ist jener der Physik zu Beginn des 20. Jahrhunderts ähnlich. Ebenso wie sich damals Wellen- und Korpuskeltheorie des Lichts als komplementäre Auffassungen erwiesen haben, wird sich zeigen, daß die Theorie der zufälligen Evolution der Organismen durch eine komplementäre, nämlich die der gerichteten Entwicklung ergänzt werden muß. Der Theorie der spontanen Mutationen wird diejenige der adaptiven oder selektionsinduzierten Mutationen zur Seite gestellt werden. [...]

Referenzen
  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. und Watson, J.D. (1989): Molecular Biology of the Cell. New York.
  • Bockemühl, J. (1980): Eine neue Sicht der Vererbungserscheinungen. In: Lebenszusammenhänge erkennen, erleben, gestalten. J.B. Hrsg. Dornach, Nachauflage 1986.
  • Cairns, J., Overbaugh, J. und Miller, S. (1988): The origin of mutants. Nature 335, S. 142.
  • Cullis, C.A. (1988): Control of variation in higher plants. In: Evolutionary Processes and Methaphors; Mae-Wan Ho und Sidney W. Fox, Hrsg. Chichester u.a.
  • Darwin, Ch. (1859): The Origin of Species. Deutsch: Die Entstehung der Arten durch natürliche Zuchtwahl, übersetzt durch C.W Neumann. Stuttgart 1989.
  • DeBeer, G. (1958): Embryos and Ancestors. Oxford.
  • Foster, P.L. (1992): Directed Mutation: Between Unicorns and Goats. J. Bacteriol. 174, S. 1711.
  • Foster, P.L. (1993): Adaptive Mutation: The Uses of Adversity. Annu. Rev. Microbiol. 47, S. 467.
  • Galitski, T. und Roth, J.R. (1995): Evidence that F Plasmid Transfer Replication Underlies Apparent Adaptive Mutation. Science 268, S. 421.
  • Haeckel, E. (1906): Prinzipien der generellen Morphologie der Organismen. Berlin.
  • Hall, B.G. (1988): Adaptive Evolution That Requires Multiple Spontaneous Mutations. Teil I. Mutations Involving an Insertion Sequence. Genetics 120, S. 887.
  • Hall, B.G. (1990): Spontaneous Point Mutations That Occur More Often When Advantageous Than When Neutral. Genetics 126, S. 5.
  • Hall, B.G. (1991a): Is the Occurence of Some Spontaneous Mutations Directed by Environmental Challenges? The New Biologist 3, S. 729.
  • Hall, B. G. (1991b): Increased Rates of Advantageous Mutations in Response to Environmental Challenges. ASM News 57, S. 82.
  • Hall, B.G. (1991c): Spectrum of mutations that occur under selective and non-selective conditions in E. coli. Genetica 84, S. 73.
  • Hall, B.G. (1991d): Adaptive evolution that requires multiple spontaneous mutations: Mutations involving base substitutions. Proc. Natl. Acad. Sci. USA 88, S. 5882.
  • Hall, B.G. (1992): Selection-induced mutations occur in yeast. Proc. Natl. Acad. Sci. USA 89, S. 4300.
  • Hall, B.G. (1993): The Role of Single-Mutant Intermediates in the Generation of trpAB Double Revertants during Prolonged Selection. J. Bacteriol. 175, S. 6411.
  • Harris, R.S., Longerich, S. und Rosenberg, S.M. (1994): Recombination in Adaptive Mutation. Science 264, S. 258.
  • Kammerer, J. (1923): Breeding experiments on the inheritance of acquired characters. Nature 111, S. 637.
  • Kammerer, J. (1924): Neuvererbung oder Vererbung erworbener Eigenschaften. Stuttgart/Heilbronn.
  • Koch, AL. (1993): Genetic Response of Microbes to Extreme Challenges. J. theor. Biol. 160, S. 1.
  • Koestler, A. (1971): The Case of the Midwife Toad. New York.
  • Kolter, R. (1992): Life and Death in Stationary Phase. ASM News 58, S. 75.
  • Lamarck, J.B. (1809): Philosophie zoologique. Paris.
  • Lederberg, J. und Lederberg‚ E. (1952): Replica Plating and Indirect Selection of Bacterial Mutants. J. Bacteriol. 63, S. 399.
  • Lefèvre, W. (1984): Die Entstehung der biologischen Evolutionslehre. Frankfurt a.M., Berlin.
  • Lenski, R E., Slatkin, M. und Ayala, F.J. (1989): Mutation and selection in bacterial populations: Alternatives to the hypothesis of directed mutation. Proc. Natl. Acad. Sci. USA 86, S. 2775.
  • Luria, R.E. und Delbrück, M. (1943): Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, S. 491.
  • MacPhee, D.G. (1993): Directed mutation: paradigm postponed. Mutation Res. 285, S. 109.
  • Marx, J.L. (1984): Instability in Plants and the Ghost of Lamarck. Science 224, S. 1415.
  • Maynard Smith, J. (1989): Evolutionary Genetics. Oxford, New York, Tokyo.
  • Mayr, E. (1984): Die Entwicklung der biologischen Gedankenwelt. Berlin u.a.
  • Mayr, E. (1994): War Darwin ein Lamarckist? Natw. Rdsch. 47. ]hrg., Heft 6, S. 240.
  • Mittler, J.E. und Lenski, R.E. (1990): New data on excisions of MU from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature 344, S. 173.
  • Mittler, J. E. und Lenski, R.E. (1992): Experimental evidence for an alternative to directed mutation in the hgl operon. Nature 356, S. 446.
  • Mittler, J.E. und Lenski, R.E. (1993): The Directed Mutation Controversy and Neo-Darwinism. Science 259, S. 188.
  • Pankow, W. et al. (1991): The Significance of Mycorrhozas for Protective Ecosystems. Experientia 47, S. 391.
  • Piaget, J. (1983): Biologie und Erkenntnis. Über die Beziehungen zwischen oganischen Regulationen und kognitiven Prozessen. Frankfurt a.M.
  • Radicella, J.R, Park, P.U. und Fox, M.S. (1995): Adaptive Mutation in Escherichia coli: A Role for Conjugation. Science 268, S. 418.
  • Ryan, F., Nakada, D. und Schneider, M. (1961): Is DNA Replication a Necessary Condition for Spontaneous Mutation? Z. Vererbungsl. 92, S. 38.
  • Sankjewitsch, E. (1950): Die Arbeitsmethoden der Mitschurinschen Pflanzenzüchtung. Stuttgart.
  • Schad, W. (1983): Zur Biologie der Gestalt der mitteleuropäischen buchenverwandten und ahornartigen Bäumen. In: Goetheanistische Naturwissenschaft, Bd. 2. Stuttgart.
  • Shapiro, J.S. (1995): Adaptive Mutation: Who’s Really in the Garden? Science 268, S. 373.
  • Stahl, F.W. (1988): A unicorn in the garden. Nature 335, S. 112.
  • Stahl, F.W. (1990): If it smells like a unicorn. Nature 346, S. 791.
  • Steiner, R. (1891): Über den Gewinn unserer Anschauungen von Goethes naturwissenschaftlichen Arbeiten durch die Publikationen des Goethe-Archivs. In: Methodische Grundlagen der Anthroposophie, GA30, Dornach 1989.
  • Steiner, R (1900): Haeckel und seine Gegner. In: Methodische Grundlagen der Anthroposophie, GA 30, Dornach 1989.
  • Suchantke, A. (1974): Biotoptracht und Mimikry bei afrikanischen Tagfaltern. Ele. d. N. 21, S. 1.
  • Suchantke, A. (1976): Biotoptracht bei südamerikanischen Schmetterlingen. Ele. d. N. 25, S. 1.
  • Symonds‚ N.D. (1989): Evolution: Anticipatory Mutagenesis? Nature 337, S. 119.
  • Symonds, N.D. (1991): A fitter theory of evolution? New Scientist 21, S. 30.
  • Symonds, N.D. (1993): Francis Ryan and the Origins of Directed Mutagenesis. Mutation Res. 285, S. 9.
  • Thaler, D.S. (1994): The Evolution of Genetic Intelligence. Science 264, S. 224.
  • Waddington, C.H. (1959): Evolutionary Adaptation. In: The Evolution of an Evolutionist, New York 1975.
  • Watson, J.D. und Crick, FH. C. (1953): Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, S. 737.
  • Wirz, J. (1990): Schritte zu einem neuen Ansatz in der Entwicklungsbiologie. Ele. d. N. 53, S. 3.